# JOC<sub>Note</sub>

### A Convenient Route to Enantiopure 3-Aryl-2,3-diaminopropanoic Acids by Diastereoselective Mannich Reaction of Camphor-Based Tricyclic Iminolactone with Imines

Huan-Huan Zhang, Xiu-Qin Hu, Xiao Wang, Yong-Chun Luo, and Peng-Fei Xu\*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China

xupf@lzu.edu.cn

Received January 20, 2008



A novel and convenient route to the asymmetric synthesis of 2,3-diamino acids via Mannich reaction of iminolactones **1a** and **1b** with *N*-protected imines has been achieved in good yields (up to 95%) and high diastereoselectivity (dr: >99:1). Hydrolysis of the Mannich adducts under acidic conditions furnished the desired 3-aryl-2,3-diaminopropanoic acids in good yields (up to 85%) with excellent enantiomeric excesses (99% ee).

Optically active 2,3-diamino acids are an important class of compounds due to their presence in a variety of peptide antibiotics, antifungal dipeptides, and other biologically active compounds.<sup>1</sup> One example is (2R,3S)-2,3-diamino-3-phenyl-propanoic acid, which is an alternative side chain of taxol to improve its water solubility.<sup>2</sup> As a consequence, a range of methods to synthesize optically active 2,3-diamino acid derivatives have been reported so far.<sup>3</sup> However, almost all of them suffer from one or more drawbacks including lack of generality, low-yielding, or complex procedures. Furthermore, to the best of our knowledge, there have been only a few reports for the synthesis of free 2,3-diamino acids.<sup>3b,4</sup> The Mannich reaction<sup>5</sup> was discovered in 1912 and is one of the most important

carbon-carbon bond-forming reactions for the synthesis of nitrogenous molecules, such as diamino acid derivatives<sup>6</sup> and amino alcohols, which can lead to the generation of two contiguous nitrogen-bearing stereogenic centers. Thus, we report a novel and convenient approach to generate optically pure 2,3-diamino acids in high yields with excellent diastereoselectivity via asymmetric Mannich reaction of *N*-protected imines with zinc enolates of tricyclic iminolactones **1a** and **1b**<sup>7</sup> derived from natural (1*R*)-(+)-camphor.

Our investigation began with the reaction of iminolactone **1a** with various *N*-aryl-substituted imines, but no Mannich adducts were detected. Given the low reactivity of imines in this nucleophilic addition, a strong electron-withdrawing group, such as sulfonyl, was introduced on the nitrogen atom of the imine in order to activate the C=N bond. Fortunately, we found that *N*-tosyl-*C*-phenyl imine **2a** reacted smoothly with iminolactone **1a** at -78 °C in THF using LDA as the base to afford a mixture of diastereomeric adducts. The result suggested that the electron-withdrawing imine-protecting group played an important role in this nucleophilic addition. Thus, we chose the *N*-tosyl-*C*-phenyl imine **2a** as a substrate for further investigation.

In an attempt to improve the yield and the diastereoselectivity, we carried out a series of experiments varying the additives and bases used. Representative results are listed in Table 1. Commonly used additives, such as LiCl, DMPU, or  $Et_2AlCl$ , either failed to promote the reaction (entry 1) or gave the addition adducts in low yields with poor diastereo-

(4) (a) Alker, D.; Harwood, L. M.; Williams, C. E. *Tetrahedron Lett.* **1998**, 39, 475. (b) Bunnage, M. E.; Burke, A. J.; Davies, S. G.; Millican, N. L.; Nicholson, R. L.; Roberts, P. M.; Smith, A. D. *Org. Biomol. Chem.* **2003**, *1*, 3708.

(5) Mannich, C.; Krösche, W. Arch. Pharm. 1912, 250, 647.

(6) For recent examples of the asymmetric Mannich reaction to synthesize 2,3-diamino acid derivatives, see: (a) Nishiwaki, N.; Knudsen, K. R.; Gothelf, K. V.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 2992. (b) Bernardi, L.; Gothelf, A. S.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2003, 68, 2583. (c) Davis, F. A.; Deng, J. Org. Lett. 2004, 6, 2397. (e) Salter, M. M.; Fujii, J.-i.; Maruoka, K. Org. Lett. 2004, 6, 2397. (e) Salter, M. M.; Kobayashi, J.; Shimizu, Y.; Kobayashi, S. Org. Lett. 2006, 8, 3533. (f) Davis, F. A.; Zhang, Y.; Qiu, H. Org. Lett. 2007, 9, 833. (g) Cutting, G. A.; Stainforth, N. E.; John, M. P.; Kociok-Kohn, G.; Williams, R. M. J. Am. Chem. Soc. 2007, 129, 10632. (h) DeMong, D. E.; Williams, R. M. J. Am. Chem. Soc. 2003, 125, 8561. (i) DeMong, D. E.; Williams, R. M. Tetrahedron Lett. 2001, 42, 3529. (7) (a) Xu, P.-F.; Chen, Y.-S.; Lin, S.-I.; Lu, T.-J. J. Org. Chem. 2002, 67, 2309. (b) Xu, P.-F.; Lu, T.-J. J. Org. Chem. 2003, 68, 658. (c) Li, S.; Hui, X.-P.; Yang, S.-B.; Jia, Z.-J.; Xu, P.-F.; Lu, T.-J. Tetrahedron: Asymmetry 2005, 16, 1729. (d) Xu, P.-F.; Li, S.; Lin, S.-I.; Wu, C.-C.; Fan, B.; Golfis, G. J. Org. Chem. 2006, 71, 4364.

For a comprehensive summary of biologically active 2,3-diamino acids, see: (a) Dunn, P. J.; Häner, R.; Rapoport, H. J. Org. Chem. **1990**, 55, 5017. (b) Lucet, D.; Gall, T. L.; Mioskowski, C. Angew. Chem., Int. Ed. **1998**, 37, 2580. (c) Westermann, B. Angew. Chem., Int. Ed. **2003**, 42, 151. (d) Wang, M.; Gould, S. J. J. Org. Chem. **1993**, 58, 5176. (e) Webber, S. E.; Okano, K.; Little, T. L.; Reich, S. H.; Xin, Y.; Worland, S. T.; Fuhrman, S. A.; Matthews, D. A.; Love, R. A.; Hendrickson, T. F.; Patick, A. K.; Meador, J. W.; Ferre, R. A.; Brown, E. L.; Ford, C. E.; Binford, S. L. J. Med. Chem. **1998**, 41, 2786. (f) Viso, A.; Fernández de la Pradilla, R.; García, A.; Flores, A. Chem. Rev. **2005**, 105, 3167. and references cited therein.

<sup>(2) (</sup>a) Rossi, F. M.; Powers, E. T.; Yoon, R.; Rosenberg, L.; Meinwald, J. *Tetrahedron* **1996**, *52*, 10279. (b) Moyna, G.; Williams, H. J.; Scott, A. I. *Synth. Commun.* **1997**, *27*, 1561.

<sup>(3)</sup> For summaries of the existing literature of the synthesis of 2,3-diamino acids, see: (a) Han, H.; Yoon, J.; Janda, K. D. J. Org. Chem. 1998, 63, 2045. (b) Lee, S.-H.; Yoon, J.; Chung, S.-H.; Lee, Y.-S. Tetrahedron 2001, 57, 2139. (c) Zhou, X.-T.; Lin, Y.-R.; Dai, L.-X. Tetrahedron: Asymmetry 1999, 10, 855. (d) Capone, S.; Guaragna, A.; Palumbo, G.; Pedatella, S. Tetrahedron 2005, 61, 6575. (e) Nadir, U. K.; Krishna, R. V.; Singh, A. Tetrahedron Lett. 2005, 46, 479. (f) Durham, T. B.; Miller, M. J. J. Org. Chem. 2003, 68, 35. (g) Robinson, A. J.; Stanislawski, P.; Mulholland, D.; He, L.; Li, H.-Y. J. Org. Chem. 2001, A. J., Stanistawski, F., Multionand, D., He, E., E., H., 1. J. Org. Chem. 2001, 66, 4148. (h) Li, B.-F.; Yuan, K.; Zhang, M.-J.; Wu, H.; Dai, L.-X.; Wang, Q.-R.; Hou, X.-L. J. Org. Chem. 2003, 68, 6264. (i) Viso, A.; Fernández de la Pradilla, R.; López-Rodríguez, M. L.; García, A.; Flores, A.; Alonso, M. J. Org. Chem. 2004, 69, 1542. (j) Wang, D.; Zhang, P.-F.; Yu, B. Helv. Chim. Acta 2007, 90, 938. (k) Viso, A.; Fernández de la Pradilla, R.; García, A.; Guerrero-Strachan, C.; Alonso, M.; Tortosa, M.; Flores, A.; Martínez-Ripoll, M.; Fonseca, I.; André, I.; Rodríguez, A. Chem. Eur. J. 2003, 9, 2867. (1) Tranchant, M.-J.; Dalla, V. Tetrahedron 2006, 62, 10255. (m) Knudsen, K. R.; Risgaard, T.; Nishiwaki, N.; Gothelf, K. V.; Jørgensen, K. A. J. Am. Chem. Soc. 2001, 123, 5843. (n) Singh, A.; Yoder, R. A.; Shen, B.; Johnston, J. N. J. Am. Chem. Soc. 2007, 129, 3466. (o) Chen, Z.; Morimoto, H.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2008, 130, 2170.

## JOC Note

#### TABLE 1. Mannich Reaction of Iminolactone 1a with N-Tosyl-C-phenyl Imine 2a

|       | $ \begin{array}{c} \begin{array}{c} N \\ O \\ \end{array} \end{array} + \begin{array}{c} N \\ Ph \end{array} \end{array} \xrightarrow{TS -78 \circ C} \\ \hline THF \\ \end{array} \begin{array}{c} O \\ O \\ \end{array} \end{array} \\ \begin{array}{c} N \\ O \\ H \end{array} \xrightarrow{H} \begin{array}{c} Ph \\ Ph \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} Ph \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} Ph \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} Ph \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ H \\ \end{array} \\ \begin{array}{c} Ph \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} Ph \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} Ph \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} Ph \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} Ph \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} Ph \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} Ph \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} Ph \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} Ph \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} Ph \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} Ph \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} Ph \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} Ph \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} Ph \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} Ph \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \end{array} \\ \begin{array}{c} N \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \end{array} \\ \begin{array}{c} N \\ \end{array} \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \begin{array}{c} N \\ H \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} N \\ \end{array} \\ \end{array} \\ \begin{array}{c} N \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} N \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} N \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} N \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} $ \\ \\ \end{array} \\ \\ \\ \\ |                  |                 |                 |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|-----------------|--|--|
|       | 1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2a 3a            | 3a' ᢅ           |                 |  |  |
| entry | base (equiv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | additive (equiv) | dr <sup>a</sup> | yield (%)       |  |  |
| 1     | LDA(1.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LiCl(6)          | complex         |                 |  |  |
| 2     | LDA(1.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DMPU(3)          | 100:37:26:13    | 58 <sup>b</sup> |  |  |
| 3     | LDA(1.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Et_2AlCl(2.2)$  | 100:67:24:0     | $32^{b}$        |  |  |
| 4     | LDA(1.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ZnCl_2(1.2)$    | >99/1           | 91 <sup>c</sup> |  |  |
| 5     | LHMDS(1.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ZnCl_2(1.2)$    | >99/1           | 91 <sup>c</sup> |  |  |
| 6     | KHMDS(1.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ZnCl_2(1.2)$    | >99/1           | $90^c$          |  |  |

<sup>&</sup>lt;sup>*a*</sup> The ratios were estimated by <sup>1</sup>H NMR integrations of the crude reaction mixtures. <sup>*b*</sup> Yield of the inseparable diastereomeric mixture after silica gel column chromatography. <sup>*c*</sup> Isolated yield.

TABLE 2. Mannich Reaction of Tricyclic Iminolactones 1a and 1b with N-tosyl Imines 2a-h

| $ \begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \end{array} \xrightarrow{PG} \begin{array}{c} 1. \text{ LDA}, \text{ THF} \\ \hline 2. \text{ ZnCl}_2, -78 \text{ °C} \end{array} \xrightarrow{N} \begin{array}{c} H \\ & & \\ \end{array} \xrightarrow{H} \begin{array}{c} N \\ H \\ & \\ \end{array} \xrightarrow{H} \begin{array}{c} N \\ H \\ \end{array} \xrightarrow{H} \begin{array}{c} N \\ \end{array} \xrightarrow{H} \begin{array}{L} \end{array} \xrightarrow{H} \begin{array}{c} N \\ \end{array} \xrightarrow{H} \begin{array}{c} N \\ \end{array} \xrightarrow{H} \begin{array}{H$ |           |                                                      |                                                             |            |          |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------|-------------------------------------------------------------|------------|----------|------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | 1a 2a-2h                                             | 3a-3                                                        | h 3a'-3h'  |          |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | - PG<br>1. LDA , THF<br>2. ZnCl <sub>2</sub> , -78 °C<br>GF |            | )<br>IPG |                        |
| entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | substrate | PG                                                   | R                                                           | product    | $dr^a$   | yield (%) <sup>b</sup> |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1a        | Ts                                                   | Ph                                                          | 3a         | >99:1    | 91                     |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1a        | Ts                                                   | p-CH <sub>3</sub> Ph                                        | 3b         | >99:1    | 94                     |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1a        | Ts                                                   | o-CH <sub>3</sub> Ph                                        | 3c         | >99:1    | 87                     |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1a        | Ts                                                   | m-CH <sub>3</sub> Ph                                        | 3d         | >99:1    | 86                     |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1a        | Ts                                                   | p-CH <sub>3</sub> OPh                                       | 3e         | >99:1    | 95                     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1a        | Ts                                                   | o-CH <sub>3</sub> OPh                                       | 3f         | >99:1    | 91                     |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1a        | Ts                                                   | p-ClPh                                                      | 3g         | >99:1    | 93                     |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1a        | Ts                                                   | 2-furyl                                                     | 3h         | >99:1    | 91                     |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1b        | Ts                                                   | Ph                                                          | <b>4</b> a | >99:1    | 95                     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1b        | Ts                                                   | p-CH <sub>3</sub> Ph                                        | 4b         | >99:1    | 91                     |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1b        | Ts                                                   | o-CH <sub>3</sub> Ph                                        | 4c         | >99:1    | 82                     |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1b        | Ts                                                   | m-CH <sub>3</sub> Ph                                        | 4d         | >99:1    | 87                     |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1b        | Ts                                                   | p-CH <sub>3</sub> OPh                                       | <b>4</b> e | >99:1    | 85                     |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1b        | Ts                                                   | o-CH <sub>3</sub> OPh                                       | <b>4f</b>  | >99:1    | 83                     |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1b        | Ts                                                   | p-ClPh                                                      | 4g         | >99:1    | 84                     |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1b        | Ts                                                   | 2-furyl                                                     | 4h         | >99:1    | 92                     |

<sup>*a*</sup> The ratios were estimated by <sup>1</sup>H NMR integrations, we cannot find other isomers from crude reaction mixtures. <sup>*b*</sup> Yield of the major products after silica gel column chromatography.

selectivity (entries 2 and 3). However, addition of 1.2 equiv of zinc chloride  $(ZnCl_2)^8$  dramatically improved both the yield (91%) and the diastereoselectivity (dr: >99:1) affording a complete conversion of the starting materials to the product **3a** as a single isomer in less than 30 min (entry 4). Other bases, such as lithium hexamethyldisilazide (LHMDS) and potassium hexamethyldisilazide (KHMDS), could also give the same results as LDA (entries 5 and 6).

Encouraged by these results, we next examined the scope of the reaction under the optimized conditions. Results obtained in the addition of tricyclic iminolactones **1a** and **1b** to a variety of *N*-tosyl imines **2a**-**h** are summarized in Table 2. All reactions were conducted in THF at -78 °C in the presence of ZnCl<sub>2</sub> with LDA as the base.

As revealed in Table 2, high yields (82–95%) and excellent diastereoselectivities (dr: >99:1) were obtained with all the substrates. The high diastereoselectivity, which is consistent with our previous results,<sup>7</sup> suggests that the Mannich reaction should take place from the *endo* face of the enolate to give the *endo*-isomer as the predominant product. The extremely high *endol* 

SCHEME 1. Proposed Mechanism of Mannich Reaction of 1b with Imines



*exo* ratio for the Mannich products is presumably due to the steric hindrance of  $C_{12}$ -methyl, which effectively blocks the reaction approach from the *exo*-face and thus favors the reaction of the electrophile from the *endo*-face of the enolate.

Although the NMR spectroscopic data support the formation of the Mannich adducts, the absolute and relative configurations

## JOC Note

TABLE 3. Mannich Reaction of Tricyclic Iminolactones 1a and 1b with N-Boc Imines 2i-k

| entry | substrate | PG  | R                    | products | dr <sup>a</sup> | yield (%) <sup>b</sup> |
|-------|-----------|-----|----------------------|----------|-----------------|------------------------|
| 1     | 1a        | Boc | Ph                   | 3i+ 3i'  | 50:1            | 82                     |
| 2     | 1a        | Boc | p-CH <sub>3</sub> Ph | 3j+3j′   | 33:1            | 81                     |
| 3     | 1a        | Boc | m-CH <sub>3</sub> Ph | 3k+3k'   | 30:1            | 71                     |
| 4     | 1b        | Boc | Ph                   | 4i+ 4i'  | 50:1            | 86                     |
| 5     | 1b        | Boc | p-CH <sub>3</sub> Ph | 4j+4j′   | 22:1            | 81                     |
| 6     | 1b        | Boc | m-CH <sub>3</sub> Ph | 4k+4k'   | 20:1            | 79                     |
|       |           |     |                      |          |                 |                        |

<sup>a</sup> The ratios were estimated by <sup>1</sup>H NMR integrations after silica gel column chromatography. <sup>b</sup> Isolated yield of the two isomers.

 TABLE 4.
 Hydrolysis of Mannich Products

|                                                                     | <b>3i+3i'</b> <u>1.</u><br><b>3j+3j'</b> <u>2.</u> E | <u>1. 6N HCl, 45°C, 3h</u><br>EtOH, propylene oxide<br>$\overline{NH_2}$<br>COOH<br>$\overline{NH_2}$<br>$\overline{NH_2}$<br>$\overline{NH_2}$<br>(2R,3S)-5i,5j |                              |                                   |                     |  |  |
|---------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------|---------------------|--|--|
|                                                                     | <b>4i+4i'</b> <u>1</u><br><b>4j+4j'</b> 2. E         | <u>. 6N HCl, 4</u><br>tOH, propy                                                                                                                                 | <u>5°C, 3h</u><br>Iene oxide | $R \xrightarrow{NH_2}_{NH_2} CO($ | ЮН                  |  |  |
| entry                                                               | substrate                                            | product                                                                                                                                                          | yield (%)                    | $dr^a$                            | ee (%) <sup>a</sup> |  |  |
| 1                                                                   | 3i + 3i'                                             | 5i                                                                                                                                                               | 78                           | 95.1/4.9                          | >99                 |  |  |
| 2                                                                   | $3\mathbf{j} + 3\mathbf{j}'$                         | 5j                                                                                                                                                               | 75                           | 97.3/2.7                          | >99                 |  |  |
| 3                                                                   | $4\mathbf{i} + 4\mathbf{i}'$                         | <b>6i</b>                                                                                                                                                        | 85                           | 96/4                              | >99                 |  |  |
| 4                                                                   | $4\mathbf{j} + 4\mathbf{j}'$                         | 6j                                                                                                                                                               | 79                           | 97/3                              | >99                 |  |  |
| <sup><i>a</i></sup> Determined by HPLC analysis on a $CR(+)$ column |                                                      |                                                                                                                                                                  |                              |                                   |                     |  |  |

were unambiguously confirmed through X-ray crystal structure analysis of compounds **3d** and **4c** (see the Supporting Information).<sup>9</sup>

The high diastereoselectivity led us to propose the mechanism to account for the stereochemical induction of the reaction. The zinc enolate of tricyclic iminolactone **1b** is formed in situ from the corresponding lithium enolate via transmetalation with 1 equiv of zinc chloride. As shown in Scheme 1, two possible pathways for the reaction are depicted. Obviously, the coordination of the imine via the lone pair of electrons on the nitrogen with the zinc center enables a six-membered cyclic transition state in pathway 1. This model can account for both the *endo* configuration and the high diastereoselectivity. By contrast, in pathway 2, the bulky sulfonyl group within the imine would not allow for efficient interaction with the zinc center.

Subsequently, we attempted to hydrolyze the Mannich adducts under acidic conditions, but the procedure has suffered from a few problems: (1) removal of the *p*-toluenesulfonate (tosyl) group was difficult under mild conditions<sup>10</sup> and (2) racemization could occur under acidic conditions and reducing the acidity or lowering the reaction temperature from 80 to 45 °C could not suppress the racemization. The best result was achieved in moderate diastereoselectivity (dr: 15:1) by treatment with 6 N HCl at 45 °C. In view of these problems, we turned our attention

(10) Jefford, C. W.; MeNulty, J. Helv. Chim. Acta 1994, 77, 2142.

to *N*-Boc imines as an electrophile because of the fact that a Boc protecting group can be readily removed under acidic conditions.

Thus, a series of Mannich reactions with *N*-Boc imines 2i-k were then conducted as summarized in Table 3. It is noteworthy that two diastereoisomers generated in the case of *N*-Boc imines cannot be separated and the diastereomeric ratios were estimated by <sup>1</sup>H NMR integrations. The predominant *endo* configurations were the same as those of *N*-tosyl imines. The structure was also assigned by X-ray crystallographic analysis of compound **3j** (see the Supporting Information).<sup>9</sup>

Facile deprotection of the *N*-Boc group and removal of the chiral auxiliary could be achieved under acidic conditions. It is exciting that the racemization was not detected and both 3-aryl-(2S,3R)-2,3-diaminopropanoic acids and 3-aryl-(2R,3S)-2,3-diaminopropanoic acids were obtained in very high diastereo-selectivies with predominantly >99% ee (Table 4).

In conclusion, we have developed a simple and efficient method for the preparation of both free 3-aryl-(2S,3R)-2,3-diaminopropanoic acids and its enantiomers in high yield via Mannich reaction of *N*-protected imines with zinc chelated enolates derived from tricyclic iminolactones. Diastereo- and enantioselectivies obtained in this manner are very high compared with those obtained by previously reported methods. Detailed mechanistic studies of the reaction, especially to clarify the high diastereoselectivity, are ongoing.

#### **Experimental Section**

General Procedure for Mannich Reaction of Iminolactone and N-Protected Imines. Preparation of iminolactones 1a and 1b was described in ref 7. N-Tosyl imines 2a-h and N-Boc imines 2i-k were synthesized according to the reported procedure.<sup>11,12</sup>

Diisopropylamine (0.17 mL, 1.20 mmol) was added to dry THF (8.0 mL) in a long-neck flask under argon. After the solution was cooled to -78 °C, n-BuLi (2.163 M, 0.56 mL, 1.20 mmol) was added dropwise. The reaction mixture was stirred at -78 °C for 15 min. Iminolactone (207 mg, 1.0 mmol) in dry THF (8.0 mL) was added to the above freshly prepared LDA solution at -78 °C and the solution was stirred for 20 min. Then a solution of anhydrous ZnCl<sub>2</sub> (163 mg, 1.2 mmol) in dry Et<sub>2</sub>O (2.0 mL) was added and stirring was continued for 30 min followed by the addition of imine (1.2 mmol) in dry THF (5.0 mL), then the reaction mixture was stirred for another 30 min at -78 °C and saturated NH<sub>4</sub>Cl solution (1.0 mL) was added to quench the reaction. The solvent was removed under reduced pressure and the residue was diluted with diethyl ether (3  $\times$  15 mL). The resulting mixture was washed with water  $(3 \times 3.0 \text{ mL})$  and brine  $(3 \times 3.0 \text{ mL})$ , dried over anhydrous MgSO<sub>4</sub>, and then concentrated to give the crude product. The crude product was purified by flash column chromatography to yield the desired compound.

(15,2*R*,5*S*,8*R*,1′*R*)-5-(1′-*p*-Tolylsulfinylaminobenzyl)-8,11,11-trimethyl-3-oxa-6-azatricyclo[6.2.1.0<sup>2,7</sup>]undec-6-en-4-one (4a). 4a was purified by chromatography (EtOAc/petroleum = 1/5) as a white solid: yield 95%;  $[\alpha]^{26}_{D} - 15$  (*c* 1.0, CH<sub>2</sub>Cl<sub>2</sub>); mp 140–142 °C; IR (KBr) 2960, 1733, 1334, 1161, 703, 666 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 7.63 (d, J = 8.0 Hz, 2H), 7.29–7.26 (m, 1H), 7.22–7.15 (m, 4H), 7.03 (d, J = 8.8 Hz, 2H), 6.21 (d, J = 8.4 Hz, 1H), 4.84 (dd, J = 8.4, 4.4 Hz, 1H), 4.70 (d, J = 4.4 Hz, 1H), 2.36 (s, 3H), 2.19 (s, 1H), 1.81 (d, J = 4.8 Hz, 1H), 1.78–1.71 (m, 1H), 1.60–1.53 (m, 1H), 1.30–1.23 (m, 1H), 0.99 (s, 3H), 0.81 (s, 3H), 0.65 (s, 3H), 0.60–0.54 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 183.6, 170.2, 143.3, 137.5, 136.5, 129.4, 128.5, 128.4, 127.4,

<sup>(8)</sup> It is very important to use dry  $ZnCl_2$ , otherwise the yields and diastereoselectivity will be lower. Therefore,  $ZnCl_2$  was dried with a heat gun under vacuum.

<sup>(9)</sup> Crystal data for **3d**, **3j**, and **4c** have been deposited in CCDC as deposition numbers 672090, 672091, and 672092, respectively. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www. ccdc.com.

<sup>(11)</sup> Jennings, W. B.; Lovely, C. J. Tetrahedron 1991, 47, 5561.

<sup>(12)</sup> Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964.

126.9, 79.2, 65.4, 57.5, 52.9, 48.3, 47.0, 28.6, 25.8, 21.4, 19.8, 19.3, 10.0; HRMS (calcd for  $C_{26}H_{31}N_2O_4S)$  467.1999, found 467.1995 (M + H^+).

General Procedure for Hydrolysis of Mannich Products. The Mannich product (80 mg) was dissolved in 6 N HCl (3 mL) in a sealed tube with a Teflon screw cap and heated at 45 °C for 3 h. After it was cooled to room temperature, water (5 mL) was added and the mixture was extracted with diethyl ether ( $3 \times 5$  mL). The separated aqueous layer was evaporated under reduced pressure and the residue was dissolved in EtOH (5 mL). Propylene oxide (2 mL) was then added to the above solution and the mixture was stirred at room temperature for 30 min. The white solid started to precipitate, which was collected by filtration under reduced pressure and washed with cold EtOH ( $2 \times 2$  mL) and Et<sub>2</sub>O ( $1 \times 4$  mL) to give the desired 2,3-diamino acid.

**3-Phenyl-(2***S***,3***R***)-2,3-diaminopropanoic acid (6i). 6i** was obtained as a white solid: yield 85%;  $[\alpha]^{26}_{D}$  +39 (*c* 0.52, H<sub>2</sub>O); mp 189–191 °C; IR (KBr) 3419, 2920, 1650, 1531, 768, 703 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O)  $\delta$  (ppm) 7.54–7.49 (m, 5H), 4.65 (d, *J* 

= 11.2 Hz, 1H), 4.26 (d, J = 11.2 Hz, 1H); <sup>13</sup>C NMR (100 MHz, D<sub>2</sub>O)  $\delta$  (ppm) 171.0, 131.5, 131.1, 130.3, 128.1, 54.6, 54.4; HRMS (calcd for C<sub>9</sub>H<sub>13</sub>N<sub>2</sub>O<sub>2</sub>) 181.0972, found 181.0972 (M + H<sup>+</sup>). Diastereomeric ratio 96/4, enantiomeric excess >99%, determined by HPLC.

**Acknowledgment.** We are grateful for the financial support of the National Natural Science Foundation of China (NSFC, 20772051, 20572039), the Program for NCET-05-0880, and the Doctoral Funds from the Chinese Ministry of Education of the People's Republic of China.

**Supporting Information Available:** Crystallographic data for products **3d**, **4c**, and **3j** (CIF), copies of <sup>1</sup>H and <sup>13</sup>C NMR spectra, characterization data for all new compounds, and HPLC results. This material is available free of charge via the Internet at http://pubs.acs.org.

JO8001408